Classical Logic Laws
Here’s the translation of the provided laws of logic into English:
---
### **1. Classical Logic Laws (Aristotelian)**
- **Law of Identity:**
Every entity is identical to itself:
\( A \equiv A \).
Example: "An apple is an apple."
- **Law of Non-Contradiction:**
A statement cannot be both true and false simultaneously:
\( \neg (A \land \neg A) \).
Example: "It cannot be both raining and not raining at the same time."
- **Law of Excluded Middle:**
Every statement is either true or false, with no middle ground:
\( A \lor \neg A \).
Example: "It is either raining or not raining."
---
### **2. Propositional Logic Laws**
- **De Morgan's Laws:**
- \( \neg (A \land B) \equiv \neg A \lor \neg B \).
- \( \neg (A \lor B) \equiv \neg A \land \neg B \).
- **Double Negation:**
\( \neg \neg A \equiv A \).
- **Implication:**
\( A \to B \equiv \neg A \lor B \).
- **Distributive Laws:**
- \( A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \).
- \( A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \).
- **Absorption Laws:**
- \( A \land (A \lor B) \equiv A \).
- \( A \lor (A \land B) \equiv A \).
- **Commutative Laws:**
- \( A \land B \equiv B \land A \).
- \( A \lor B \equiv B \lor A \).
- **Associative Laws:**
- \( (A \land B) \land C \equiv A \land (B \land C) \).
- \( (A \lor B) \lor C \equiv A \lor (B \lor C) \).
---
### **3. Rules of Inference**
- **Modus Ponens:**
If \( A \to B \) is true and \( A \) is true, then \( B \) must be true.
\[
\frac{A \to B \quad A}{B}
\]
- **Modus Tollens:**
If \( A \to B \) is true and \( B \) is false, then \( A \) must be false.
\[
\frac{A \to B \quad \neg B}{\neg A}
\]
- **Hypothetical Syllogism:**
If \( A \to B \) and \( B \to C \), then \( A \to C \).
\[
\frac{A \to B \quad B \to C}{A \to C}
\]
- **Disjunctive Syllogism:**
If \( A \lor B \) is true and \( \neg A \) is true, then \( B \) must be true.
\[
\frac{A \lor B \quad \neg A}{B}
\]
---
### **4. Predicate Logic Laws**
- **Universal Generalization:**
If a property holds for an arbitrary element, it holds for all elements.
Example: If \( P(x) \) is true for any \( x \), then \( \forall x \, P(x) \).
- **Universal Instantiation:**
If \( \forall x \, P(x) \) is true, then \( P(a) \) is true for any object \( a \).
- **Contrapositive:**
\( \forall x (P(x) \to Q(x)) \equiv \forall x (\neg Q(x) \to \neg P(x)) \).
---
### **5. Non-Classical Logic Systems**
- **Intuitionistic Logic:**
Rejects the Law of Excluded Middle (\( A \lor \neg A \)) in certain cases.
- **Fuzzy Logic:**
Allows degrees of truth between "true" and "false" (e.g., 0.7 true).
- **Paraconsistent Logic:**
Handles contradictions without system collapse.
---
These laws form the foundation of reasoning in mathematics, computer science, philosophy, and artificial intelligence.
Comments
Post a Comment