Classical Logic Laws

 Here’s the translation of the provided laws of logic into English:


---


### **1. Classical Logic Laws (Aristotelian)**  

- **Law of Identity:**  

  Every entity is identical to itself:  

  \( A \equiv A \).  

  Example: "An apple is an apple."  


- **Law of Non-Contradiction:**  

  A statement cannot be both true and false simultaneously:  

  \( \neg (A \land \neg A) \).  

  Example: "It cannot be both raining and not raining at the same time."  


- **Law of Excluded Middle:**  

  Every statement is either true or false, with no middle ground:  

  \( A \lor \neg A \).  

  Example: "It is either raining or not raining."  


---


### **2. Propositional Logic Laws**  

- **De Morgan's Laws:**  

  - \( \neg (A \land B) \equiv \neg A \lor \neg B \).  

  - \( \neg (A \lor B) \equiv \neg A \land \neg B \).  


- **Double Negation:**  

  \( \neg \neg A \equiv A \).  


- **Implication:**  

  \( A \to B \equiv \neg A \lor B \).  


- **Distributive Laws:**  

  - \( A \land (B \lor C) \equiv (A \land B) \lor (A \land C) \).  

  - \( A \lor (B \land C) \equiv (A \lor B) \land (A \lor C) \).  


- **Absorption Laws:**  

  - \( A \land (A \lor B) \equiv A \).  

  - \( A \lor (A \land B) \equiv A \).  


- **Commutative Laws:**  

  - \( A \land B \equiv B \land A \).  

  - \( A \lor B \equiv B \lor A \).  


- **Associative Laws:**  

  - \( (A \land B) \land C \equiv A \land (B \land C) \).  

  - \( (A \lor B) \lor C \equiv A \lor (B \lor C) \).  


---


### **3. Rules of Inference**  

- **Modus Ponens:**  

  If \( A \to B \) is true and \( A \) is true, then \( B \) must be true.  

  \[

  \frac{A \to B \quad A}{B}

  \]  


- **Modus Tollens:**  

  If \( A \to B \) is true and \( B \) is false, then \( A \) must be false.  

  \[

  \frac{A \to B \quad \neg B}{\neg A}

  \]  


- **Hypothetical Syllogism:**  

  If \( A \to B \) and \( B \to C \), then \( A \to C \).  

  \[

  \frac{A \to B \quad B \to C}{A \to C}

  \]  


- **Disjunctive Syllogism:**  

  If \( A \lor B \) is true and \( \neg A \) is true, then \( B \) must be true.  

  \[

  \frac{A \lor B \quad \neg A}{B}

  \]  


---


### **4. Predicate Logic Laws**  

- **Universal Generalization:**  

  If a property holds for an arbitrary element, it holds for all elements.  

  Example: If \( P(x) \) is true for any \( x \), then \( \forall x \, P(x) \).  


- **Universal Instantiation:**  

  If \( \forall x \, P(x) \) is true, then \( P(a) \) is true for any object \( a \).  


- **Contrapositive:**  

  \( \forall x (P(x) \to Q(x)) \equiv \forall x (\neg Q(x) \to \neg P(x)) \).  


---


### **5. Non-Classical Logic Systems**  

- **Intuitionistic Logic:**  

  Rejects the Law of Excluded Middle (\( A \lor \neg A \)) in certain cases.  


- **Fuzzy Logic:**  

  Allows degrees of truth between "true" and "false" (e.g., 0.7 true).  


- **Paraconsistent Logic:**  

  Handles contradictions without system collapse.  


---


These laws form the foundation of reasoning in mathematics, computer science, philosophy, and artificial intelligence.

Classical Logic Laws



Comments

support

translate

top posts

make crypto from telegram bots new coins

create cartoon movies on Android devices

Zack and the car

Zack Builds His House and Gets Married

Zack, Netflix, and the Flying Shemagh

Zack, Abu Mishari’s New Driver

How to make scientists laugh

The Advertising Disaster

Fashion and Intelligence… Don’t Mix!

Popular posts from this blog

make crypto from telegram bots new coins

how to earn more coins & more tokens crypto in 162 games updated

sell your internet traffic

Followers

Followers

Popular posts from this blog

make crypto from telegram bots new coins

how to earn more coins & more tokens crypto in 162 games updated

sell your internet traffic

Translate

in

sites

  • chatgpt
  • deepseek
  • google

online